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Abstract: Major Depressive Disorder (MDD) is a prevalent mental health condition with a complex
pathophysiology involving neuroinflammation, neurodegeneration, and disruptions in neuronal and
glial cell function. Microglia, the innate immune cells of the central nervous system, release inflamma-
tory cytokines in response to pathological changes associated with MDD. Damage-associated molec-
ular patterns (DAMPs) act as alarms, triggering microglial activation and subsequent inflammatory
cytokine release. This review examines the cellular mechanisms underlying MDD pathophysiology,
focusing on the lipid-mediated modulation of neuroinflammation. We explore the intricate roles of
microglia and astrocytes in propagating inflammatory cascades and discuss how these processes
affect neuronal integrity at the cellular level. Central to our analysis are three key molecules: High
Mobility Group Box 1 (HMGB1) and 5100 Calcium Binding Protein 3 (510083) as alarmins, and
Neuron-Specific Enolase (NSE) as an indicator of neuronal stress. We present evidence from in vitro
and ex vivo studies demonstrating how these molecules reflect and contribute to the neuroinflamma-
tory milieu characteristic of MDD. The review then explores the potential of omega-3 polyunsaturated
fatty acids (w-3 PUFAs) as neuroinflammation modulators, examining their effects on microglial
activation, cytokine production, and neuronal resilience in cellular models of depression. We critically
analyze experimental data on how w-3 PUFA supplementation influences the expression and release
of HMGBI, 51003, and NSE in neuronal and glial cultures. By integrating findings from lipidomic
and cellular neurobiology, this review aims to elucidate the mechanisms by which w-3 PUFAs may
exert their antidepressant effects through modulation of neuroinflammatory markers. These insights
contribute to our understanding of lipid-mediated neuroprotection in MDD and may inform the
development of targeted, lipid-based therapies for both depression and neurodegenerative disorders.

Keywords: omega-3 polyunsaturated fatty acids; DAMPs; depression, HMGB1; S1003; NSE

1. Introduction

Neuroinflammation, characterized by the activation of microglia and astrocytes, has
been implicated in the etiology and progression of depression [1] and neurodegenerative
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disorders [2,3]. This complex interplay of immune and neuronal responses contributes
to neuronal damage, synaptic dysfunction, and cognitive decline [4,5]. Disruptions in
microglia function could be a key factor in the development of depression [6] and neurode-
generative diseases. Individuals with a history of depression may be more susceptible to
certain neurodegenerative diseases later in life, including dementia, Alzheimer’s disease
(AD), and Parkinson’s disease (PD), suggesting a common underlying vulnerability in brain
function [7-9]. Microglial dysfunction has been implicated in frontotemporal dementia
(FTD) [10]. In AD, microglial cells become activated in reaction to abnormal protein ac-
cumulations, such as amyloid-f (Af) plaques and neurofibrillary tangles (NFTs) [11-13].
Similarly, in PD, the accumulation of alpha-synuclein («x-syn) protein, a key feature of PD,
induces neuroinflammation. Microglia are activated by «-syn aggregates, which further
exacerbate the inflammatory response [14,15]. Indeed, excessive activation of microglia leads
to the release of pro-inflammatory cytokines, reactive oxygen species (ROS), and other in-
flammatory mediators, which damage neurons and synapses [16,17]. Chronic inflammation
can contribute to neuronal damage and dysfunction, leading to elevated neuronal-damage-
related biomarkers. An exaggerated inflammatory response induced by pro-inflammatory
cytokines can have detrimental effects on glial cell functions and result in neuronal damage
within the brain [18]. Meanwhile, studies have examined markers associated with glial
and neuronal damage in depression, focusing on damage-associated molecular patterns
(DAMPs) such as 5100 calcium binding protein 3 (510083) [19-21], high mobility group box 1
(HMGB1) [22,23], and the neuronal damage marker neuron-specific enolase (NSE) [24,25] as
potential biomarkers for treatment response and disease progression.

Omega-3 polyunsaturated fatty acids (w-3 PUFAs) have garnered significant attention
for their potential neuroprotective and anti-inflammatory effects [26]. Eicosapentaenoic acid
(EPA) and docosahexaenoic acid (DHA) are the primary w-3 PUFAs, demonstrating efficacy
in modulating inflammatory responses, reducing oxidative stress, and promoting neuronal
survival [27-29]. w-3 PUFAs are essential fatty acids that the human body cannot produce
on its own and must obtain through diet [30]. These lipids are integral components of cell
membranes, contributing significantly to their structure, fluidity, and function [31]. Anti-
inflammatory effects are achieved by releasing w-3 PUFAs like DHA and EPA from cell
membranes through phospholipase A2 (PLA2) [32,33]. These fatty acids are converted into
bioactive compounds by lipoxygenase (LOX) and cyclooxygenase (COX) enzymes [34,35].
These bioactive compounds activate anti-inflammatory responses by binding to specific re-
ceptors and altering gene expression, thereby reducing inflammatory cytokines [36]. Studies
suggest that w-3 PUFAs, particularly DHA and EPA, can positively influence microglial
function, including suppressing the production of pro-inflammatory cytokines [37,38] and
enhancing phagocytosis clear debris and pathogens in the brain [39,40]. Specifically, previous
in vitro studies demonstrated that w-3 PUFAs are considered to have an impact on microglial
activation states by promoting a less reactive and more neuroprotective phenotype of mi-
croglia [41-43], which can contribute to better brain health and reduced neuroinflammation.
In particular, the role of w-3 PUFAs is to inhibit the activation of microglia and subsequent
inflammatory responses [44]. Prior studies found that w-3 PUFAs could interfere with the
binding of HMGB1 and S1003 to their receptors, resulting in reduced release of these biomark-
ers [44—46] and improvement of neuronal damage or injury in glial and neuronal cells as
reflected by decreased NSE [47]. w-3 PUFAs have been found to have beneficial effects not
only for depression [48] but also for neurodegenerative diseases, including PD and AD [49].
Hence, this review explores the complex interplay between w-3 PUFAs, neuroinflammation,
and neurodegenerative diseases, with a specific focus on the role of DAMPs and neuronal
damage biomarkers. By understanding the mechanisms underlying these interactions, novel
therapeutic strategies can be developed to target neuroinflammation in depression.
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2. Microglial and Astrocyte Activation and Inflammatory and Neurodegenerative
Pathways in the Neurobiology of Depression

The neurobiological underpinnings of depression involve a complex interplay of
various factors, including the activation of microglia [1,50,51], the resident immune cells
in the brain. In individuals with depression, there is evidence suggesting that microglia
become activated, triggering an inflammatory response within the brain [52]. On the other
hand, astrocytes also play a crucial role in neurodegeneration, inflammation, and depres-
sion [53,54]. Upon stress, astrocytes, like microglia, become activated and stimulate the
release of anti-inflammatory cytokines [55]. In contrast, the presence of pro-inflammatory
cytokines, especially IL-1f3, can prompt astrocytes to secrete neurotrophic factors vital
for neuron survival [56]. Furthermore, hippocampal astrocytes play a role in mediating
depressive behavior induced by chronic stress [57]. Activated glial cells, notably microglia
and astrocytes, are key players in the inflammatory pathways linked to depression [58-60].
Microglia and astrocytes, the innate immune cells residing in the central nervous system
(CNS), have been demonstrated to prominently generate inflammatory cytokines to uphold
neurobiological homeostasis after receiving stimuli [61,62]. This activation is believed to
contribute to alterations in neuroplasticity [63], neurotransmitter regulation [64], and the
stress response system [65], all of which are implicated in the development and progres-
sion of depression. The immune cells of the brain can be activated by various danger
signals or stimuli [66]. The secretion of damage-associated molecular patterns (DAMPs),
such as S100p3 and HMGB], plays a crucial role in response to cellular damage and stress.
These DAMPs act as alarm signals, alerting the immune system to inflammation-induced
depression. These alarm signals can trigger the activation and polarization of resting
microglial cells. However, when microglial cells encounter DAMPs like S1003 and HMGBI,
they become activated and shift into a pro-inflammatory state. This polarization process
leads to the release of inflammatory cytokines that facilitate communication between cells
during immune responses. The elevated levels of certain cytokines are associated with
inflammation in the brain, including interleukin-1 beta (IL-1f3), interleukin-6 (IL-6), and
tumor necrosis factor-alpha (TNF-«) [67-69], which has been linked to the pathophysiology
of depression. Moreover, inflammation-induced depression is related to the activation of
the microglia to modulate neuronal function [6,70]; thus, the dysfunction of neuron and
microglia interaction is an important factor in the development of depression [1,71]. Acti-
vated microglia release cytokines and signaling molecules that may affect the structure and
function of neurons, potentially leading to neuronal damage and impairing neural circuits
involved in mood regulation [72]. As a result, atypical or chronic microglia activation and
functioning disrupt neurogenesis in the dentate gyrus of the hippocampus, affecting the
development and progression of various neurodegenerative diseases [2].

3. The Role of HMGB1 and S1008 in Stress-Induced Inflammation, Oxidative Stress,
and Neurodegeneration

DAMPs released from damaged or stressed cells, like HMGB1 and 5100 proteins, act
as danger signals that activate immune cells, leading to inflammatory responses [73-75].
Specifically, S100 proteins are released upon cellular stress or injury [76], while HMGBI1 is
present in the nucleus of most cells and is actively released during cell damage, necrosis, or
as a response to inflammation [77,78]. DAMPs interact with specific receptors on immune
cells, such as microglia, triggering inflammatory pathways. HMGB1 or S1003 interacts
with pattern recognition receptors (PRRs), such as toll-like receptors (TLRs), mainly TLR2,
TLR4, and the receptor for advanced glycation end product (RAGE) [73,79,80], leading
to a cascade of intracellular signaling mechanisms, such as the PI3K-AKT-mTOR path-
way, which is involved in cell survival, growth, and metabolism [81], and MAPK (ERK,
p38, INK), involved in regulating inflammation, stress responses, and programmed cell
death [82]. In result, they can trigger intracellular signaling pathways that lead to the
activation of nuclear factor-kappa B (NF-«kB) [83-85]. Once activated, NF-«B translocates to
the cell nucleus, where it promotes the transcription of pro-inflammatory genes, including
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cytokines, chemokines, and other mediators involved in inflammation [86]. The overpro-
duction of inflammatory cytokines damages neurons, resulting in neuronal damage or
injury [87], leading to neurogenerative diseases [88]. Figure 1 shows the details of pathway
of stress-induced neuroinflammation leading to depression.
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Figure 1. Potential pathway of modulation of w-3 PUFAs on 51003, HMGBI1, and NSE in
inflammation-induced depression.

In an ex vivo study, stress was observed to induce the upregulation of the RAGE. The
silencing of HMGBI1 in the rostral ventrolateral medulla (RVLM) results in the reduction
of RAGE protein expression [89]. This suggests that HMGBI is a key mediator in the
pathway through which stress induces RAGE upregulation. On the other hand, an in vitro
study with cell lines found that silencing S1003 protected cells, reducing cell death and
significantly lowering oxygen radical and nitric oxide synthase activity [90]. The study
shows that silencing S100f in cell lines protects cells from stress-induced damage by
reducing cell death and lowering the activity of oxygen radicals and nitric oxide synthase.
These findings underscore the role of S100 and HMGB1 in mediating oxidative stress
and inflammation.

4. Microglial Activation and Inflammation-Induced Neuronal Damage in Depression

Additionally, there is clear evidence that inflammation induced by depression is as-
sociated with elevated levels of inflammatory cytokines, which are found to be higher
compared to persons without the condition [91-93]. Excessive activation of microglia and
the release of inflammatory mediators can indeed have detrimental effects on neurons,
potentially leading to neuronal injury or damage [2]. Moreover, activated microglia can
both directly and indirectly interact with neurons [94]. Directly, microglia can interact with
neurons through physical contact [95]. They extend their processes toward neurons, form-
ing connections and engaging in bidirectional communication [72,96]. These interactions
can involve the release of signaling molecules, such as cytokines and chemokines, which
can affect neuronal function and survival [94,97]. Microglia can indirectly influence neu-
rons by modulating the brain’s microenvironment. When activated, microglia cells release
various molecules that can impact neighboring cells, including neurons [98]. For instance,
they can release inflammatory cytokines or growth factors that affect neuronal activity,
synaptic plasticity, and neurogenesis [94,99]. The secretion of cytotoxic molecules including
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inflammatory cytokines results in neuronal damage [100], as shown in Figure 1. Moreover,
chronic inflammation can directly harm neurons by inducing oxidative stress, disrupting
cellular signaling pathways, and promoting excitotoxicity [101]. Several biomarkers are
studied in the context of neuronal damage or injury, including S1003 and NSE. Though
astrocytes are the main source of S100(3 in the brain, other cell types, including microglia
and certain neural cells, might also produce amounts of S100§ in neuroinflammatory con-
ditions [102]. Following chronic inflammation, the presence of elevated NSE levels can
serve as an indicator of neuronal damage or injury [103].

5. Lipidomic Profiling and Anti-Inflammatory Properties of Omega-3 Polyunsaturated
Fatty Acids in Depression

The relationship between lipid metabolism and psychiatric disorders has been stud-
ied intensively. Inflammation-induced depression is often associated with disturbances
in lipid metabolism. Lipidomic studies have consistently demonstrated that depressed
persons exhibit reduced levels of omega-3 [104-106]. Moreover, w-3 PUFAs have been
considered for depression treatment and prevention due to their anti-inflammatory prop-
erties and perceived safety and tolerability [107,108]. w-3 PUFAs, particularly EPA and
DHA, are well-recognized for their potent anti-inflammatory properties, making them
a valuable component in the management of depression. These fatty acids exert their
effects by integrating into cell membranes, where they replace arachidonic acid (AA), a
precursor to proinflammatory eicosanoids. This substitution reduces the availability of
AA for conversion into inflammatory molecules such as prostaglandins, thromboxanes,
and leukotrienes, which are synthesized via the cyclooxygenase (COX) and lipoxygenase
(LOX) pathways [35]. Consequently, the overall inflammatory response is diminished.
Furthermore, w-3 PUFAs lead to the production of specialized pro-resolving mediators
(SPMs), such as resolvins, protectins, and maresins [109]. These metabolites actively termi-
nate ongoing inflammatory processes by reducing the infiltration of inflammatory cells,
inhibiting the release of proinflammatory cytokines, and promoting the clearance of cel-
lular debris. For instance, resolvin E1, derived from EPA, has been shown to suppress
the activation of the NF-«B pathway, a key regulator of inflammation, thereby decreasing
the production of proinflammatory cytokines [110]. Chronic inflammation, influenced by
these pathways, also contributes to the progression of neurodegeneration [74]. Depressed
patients frequently exhibit elevated levels of proinflammatory cytokines and reduced levels
of anti-inflammatory cytokines such as IL-4, IL-1 [111], and IL-6 [112]. w-3 PUFAs can
counteract this imbalance by reducing the production of proinflammatory cytokines and
enhancing anti-inflammatory signaling, which may improve depressive symptoms and
prevent the progression of neuroinflammation. In addition to their effects on eicosanoids
and cytokines, w-3 PUFAs impact oxidative stress pathways, which are closely linked to
inflammation. By modulating the activity of enzymes such as COX-2 [113], w-3 PUFAs
reduce the production of reactive oxygen species (ROS) and nitric oxide [114], both of
which contribute to inflammatory damage in tissues.

Studies have shown that individuals with more severe depression tend to have lower
levels of w-3 PUFAs [115-117], which correlates with increased inflammation and oxidative
stress. Additionally, depressed individuals often have an imbalanced ratio of omega-6 (w-6) to
w-3 PUFAs, which may exacerbate inflammatory responses [118]. This imbalance underscores
the importance of w-3 PUFAs in modulating inflammation and supporting mental health. Meta-
analysis studies of randomized controlled trials have shown that w-3 PUFA supplementation
contributed to better improvement of depression [48,119]. Moreover, the potential of w-3
PUFAs to mitigate inflammation suggests their therapeutic role in not only reducing depressive
symptoms but also in preventing the progression of neuroinflammatory and neurodegenerative
processes associated with mood disorders [26]. Emerging research has pointed to w-3 PUFAs
as mediators of inflammatory response [120], with their deficiency linked to increased oxidative
stress and depressive severity [121,122]. As our understanding of these mechanisms deepens,
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w-3 PUFAs may become an integral part of comprehensive treatment strategies for depression
and other inflammatory conditions.

6. Omega-3 Polyunsaturated Fatty Acids Inhibiting Damage-Associated Molecular
Pattern-Mediated Toll-like Receptors and the Receptor for Advanced Glycation
End-Product Activation in Depression

Through modulation of TLR expression and function, w-3 PUFAs can downregulate
the expression of TLRs on immune cells and cause fewer TLRs to be available on the cell
surface [123,124]; the binding sites for S100B and HMGBI are reduced, thereby decreasing the
likelihood of S100B and HMGBI interaction with its receptors. In an animal model, w-3 PUFAs
also disrupted RAGE, the receptor specifically for HMGBI1 [125]. Figure 1 illustrates that
upon the release of S1003 and HMGB], they predominantly bind to specific receptors such
as TLRs (TLR4, TLR2) and RAGE. This binding sets off the activation of the NF-«B pathway,
which kickstarts an immune response and results in the release of proinflammatory cytokines.
Additionally, in the context of chronic inflammation, the expression levels of 51003, HMGB1,
and NSE might reflect neuronal damage, indicating a potential association between sustained
inflammation and neuronal injury. w-3 PUFAs potentially interfere with 51003 and HMGB1
release and impede the NF-«kB pathway. Specifically, previous findings revealed that w-3
PUFAs might alleviate depression-like symptoms by mitigating hippocampal neuroinflamma-
tion in mice subjected to chronic unpredictable mild stress (CUMS) through the regulation of
TLR4 expression [126]. Another study reported that w-3 PUFAs inhibit the HMGB1-mediated
activation of the TLR4/NF-«B signaling pathway in a traumatic brain injury (TBI) model [44].
Moreover, both EPA and DHA equally inhibited the messenger ribonucleic acid (mRNA)
expression of S100f3 in the hippocampus of ageing rats [45]. The mechanism of inhibiting the
NF-«B pathway can lead to a suppression of immune system activation, which includes a re-
duction the in production and release of inflammatory cytokines [127]. A prior study reported
that w-3 PUFAs exhibit a decrease in inflammatory cytokines such as IL-13, IL-6, and TNF-
alpha alongside a reduction in depressive symptoms [128]. This reduction in inflammatory
cytokines is often associated with the anti-inflammatory properties attributed to w-3 PUFAs.
Moreover, secretion cytokines can lead to neuronal damage under inflammation-induced
depression [129,130]. NSE is an enzyme primarily found in neurons, and its expression can be
directly indicative of neuronal injury or damage [131]. Furthermore, in rats in a TBI model,
w-3 PUFAs were found to decrease the release of serum levels of NSE [132]. In a clinical study
involving patients with TBI who received w-3 PUFA treatment, the serum levels of both 51003
and NSE were notably reduced after 7 days when compared to the control group [47].

7. Effects of Omega-3 Polyunsaturated Fatty Acids in Damage-Associated Molecular
Patterns and Neuronal Damage Biomarkers

w-3 PUFAs modulate the activation profile of microglia, directing them towards an
anti-inflammatory or neuroprotective phenotype [37,39]. This modulation holds the poten-
tial to attenuate neuroinflammation, restore neural functionality, and potentially impede
the progression or recurrence of depression [133]. Some studies have suggested that w-3
PUFAs, particularly the EPA and DHA found in fish o0il, may have antidepressant ef-
fects [134-137]. These fatty acids are involved in brain function and have been linked to
mood regulation, potentially impacting the neurotransmitter pathways related to depres-
sion [133,138]. HMGBI1, S10083, and NSE are biomarkers associated with various aspects
of brain function and damage. HMGBI, for instance, is mainly involved in inflammation
and immune response [139], while S1003 and NSE are associated with brain injury and
neuronal damage [140].

While there is evidence supporting the potential role of w-3 PUFAs in alleviating
depression symptoms, studies specifically examining their effect on HMGB1, S1003, and
NSE in individuals with depression are sparse. Research often focuses on clinical outcomes,
such as mood improvement [141-147], rather than analyzing these specific biomarkers.
The mechanisms underlying the potential impact of w-3 PUFAs on these biomarkers
in depression are not fully understood. w-3 PUFAs might influence inflammation and
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neuroprotection, which could indirectly affect these biomarkers, but direct evidence is
lacking. Given the complex nature of depression and the multifactorial aspects of both w-3
PUFAs and the biomarkers in question, more targeted studies are necessary to explore how
w-3 PUFA supplementation might affect HMGB1, S1003, and NSE levels in individuals
with depression. This study could shed light on potential mechanisms and provide insights
into personalized treatment approaches for depression. There have not been studies
specifically dedicated to investigating the protective effects of w-3 PUFAs on specific
biomarkers such as S1003, HMGB1, and NSE in depression across animal models as well
as pre-clinical and clinical research specifically related to depression. However, some
studies have shown that w-3 PUFAs can modulate the inflammatory response following
TBI, potentially reducing HMGBI1 [77], S1003 [47], and NSE [47,132] levels and mitigating
the associated damage.

Omega-3 Polyunsaturated Fatty Acid Effects on HMGB1, S100b, and Neuron-Specific Enolase in
Prior Studies

We conducted a comprehensive literature search to evaluate the effects of w-3 PUFAs
on the biomarkers HMGB1, S100b, and NSE. The search was performed using two major
databases, PubMed and Web of Science, and included studies published up until October
22,2024. We used the keywords “HMGB1 AND Omega-3,” “S100b AND Omega-3,” and
“Neuron Specific Enolase AND Omega-3” to explore the relationship between Omega-3
and these markers. The search results showed that for HMGB1 and w-3 PUFAs, PubMed
listed 25 studies, while Web of Science had eight. For S100b and w-3 PUFAs, both databases
returned seven studies. For NSE and w-3 PUFAs, PubMed had 15 studies, while Web of
Science listed six.

The detailed process of study selection is depicted in Figure 2. Our inclusion criteria
focused on studies that specifically assessed the impact of w-3 PUFAs on the levels of
HMGBI1, S100b, and NSE. We considered a broad spectrum of study designs, including
animal models, in vitro experiments, and clinical trials across diseases. Only studies that
directly measured changes in these biomarkers as a result of w-3 PUFA administration were
selected for further analysis. In contrast, studies that did not investigate the effect of w-3
PUFAs on HMGB, 5100b, and NSE or that did not report these outcomes were excluded
from our review. This systematic approach allowed us to filter out irrelevant studies and
focus on those that provided relevant insights into the neuroprotective or anti-inflammatory
effects of w-3 PUFAs in relation to these HMGBI1, S100b, and NSE biomarkers.

Tdentification

Screening

z
g
L
£

Tncluded

Records identified through 2

databascs =

17 Duplicated records excluded

51 Records atter duplicates removed
- Excluded by title and abstract (unrelated

- topic and results)

26 Records sought for retricyal
0 Records not retricved

26 Full-text articles assessed for

eligibility
2% Articles included in the current

review

Figure 2. Selection process for included studies.
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Comprehensively, studies have evaluated the impact of w-3 PUFAs on 51003, HMGB1,
and NSE in animal models and clinical contexts, as presented in Table 1. In the context
of TBI, w-3 PUFAs administered at 2 mL/kg inhibited HMGBI1 acetylation and facili-
tated direct interactions between sirtuin 1 (SIRT1) and HMGB1 by enhancing SIRT1 activ-
ity [77], thus, reducing NF-kB activity. Similarly, w-3 PUFAs at a dose of 0.4 g/kg/day
demonstrated protective effects in the management of obstructive jaundice by reducing
HMGB] activation [148]. High doses of w-3 PUFAs (6.0 mL/kg/day) following small bowel
transplantation (SBTx) significantly reduced the expression of HMGB1 and its receptor
RAGE [46]. In a study on ischemic brain damage in ovariectomized rats, EPA at 4 mg/kg
downregulated HMGB1-related molecules and attenuated ischemic brain damage [149].
Studies on intestinal ischemia-reperfusion injury showed that EPA at 0.3 g/kg/day con-
ferred protective effects by alleviating inflammation and reducing both injury severity and
HMGBI expression [150,151] and had some protective effects in relieving inflammation
by inhibiting the expression and signal transmission of TLR4 mRNA [151]. An in vitro
study demonstrated that 200 uM DHA induced the translocation of HMGBI to the cy-
toplasm in breast cancer cells [152]. A pilot randomized controlled trial (RCT) in older
adults (65-85 years) indicated a significant lowered level of HMGB1 in the w-3-enriched
group [153]. Moreover, in a study investigating aging-associated cognitive decline, EPA
and DHA at doses of 500 mg/kg/day were found to equally inhibit the mRNA expres-
sion of 51003 in the hippocampus of aging rats [45]. For the NSE biomarker, a study on
TBI revealed that serum NSE activity was significantly lower in rats supplemented with
300 mg/kg of w-3 PUFAs compared to untreated controls [132]. Lastly, clinical studies on
severe TBI patients showed that by day 7, those treated with w-3 PUFAs had significantly
lower levels of NSE and 51003 compared to the control group [47] but no significant effect
of w-3 PUFAs on 5100 in septic patients [154]. Most of the included studies highlighted
a positive impact, showing a decrease or suppression in the expressions of these three
biomarkers. However, there is no specific study focused on assessing the effect of w-3
PUFAs on 51003, HMGB1, and NSE in depression.

Table 1. Omega-3 PUFAs and 51003, HMGBI, and NSE across diseases.

Study
Design

Marker

Treatment

Condition

Findings

Study

Animal Study

s100p

EPA (500 mg/kg/day),
DHA (500 mg/kg/day)

Ageing-Associated
Cognitive Decline

EPA and DHA equally inhibited
the mRNA expression of S1003 in
the hippocampus of ageing rats.

[45]

Animal Study

HMGB1 ¢

w-3 PUFAs 2 mL/kg

TBI

w-3 PUFAs inhibited HMGB1
acetylation and induced direct
interactions between SIRT1 and
HMGBI by increasing SIRT1
activity following TBL

[77]

Animal Study

HMGB1 ¢

w-3 PUFAs
0.4 g/kg/day

Obstructive Jaundice

w-3 PUFA has protective effect in
the management of obstructive
jaundice and reduces the
activation of HMGBI1.

[148]

Animal Study

NSE ¥

w-3 PUFAs 300 mg/kg

TBI

Serum NSE activity significantly

lower in rats supplemented with

w-3 PUFAs compared with TBI
group (untreated).

[132]

Animal Study

HMGB1 ¢

w-3 PUFAs
6.0 mL/kg/day

SBTx

High levels of w-3 PUFAs
following SBTx significantly
reduced the HMGB1 and RAGE
expression.

[46]

Animal Study

HMGB1 ¢

EPA 4 mg/kg

Ischemic Brain
Damage in
Ovariectomized Rats

EPA downregulated HMGB1
signal-related molecules and
attenuated ischemic brain damage.

[149]

Animal Study

HMGB1 ¢

EPA 0.3/kg/day

Intestinal
Ischemia-reperfusion
Injury

The intervention of w-3 PUFAs
reduced levels of HMGB1 and had
some protective effect relieving
inflammation by inhibiting the
expression and signal transmission
of TLR4 mRNA.
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Study . S
No. Desi Marker Treatment Condition Findings Study
esign
Intestinal The injury degree and HMGB1
8 Animal Study HMGB1 + EPA 0.3/kg/day Ischemia-reperfusion expression were decreased in the [151]
Injury w-3 PUFA group.
DHA induced HMGB1
9 In vitro HMGB1 ¢ 200uM DHA TNBC translocation towards the [152]
cytoplasm in breast cancer cells.
. 749 mg EPA and 397 m; Inflammation in older =~ HMGB-1 improved significantly in
4 8 8 P 8 y 5
10 Pilot RCT HMGB1 DHA adults (65-85 years) the w-3-enriched group. [153]
On day 7, the w-3 PUFA group
L. had significantly lower expression
4 4 - & y P y
11 Clinical Study NSE ¥ and S1003 w-3 PUFAs Severe TBIL of NSE and S$100@ than the control [47]
group.
Intestinal Expression of HMGBI1 in the PUFA
12 Animal Model HMGB1 ¢ w-3 PUFAs Ischemia-reperfusion group was less than control group [155]
Injury after w-3 PUFA treatment.
.. . . w-3 PUFAs did not affect markers =
13 Clinical Study 51003 0.12 mg/kg w-3 PUFAs Septic Patients of brain injury, including S100. [154]
w-3 PUFAs inhibited HMGB1
14 Animal Model HMGB1 ¢ 2mL/kg w-3 PUFAs TBI nuclear translocation and secretion [44]
and decreased expression of
HMGBI in neurons and microglia.
15 Animal Model NSE ¥ 0.8 g/kg w-3 PUFAs Pregnant Wistar Rats NSE was reversed after w-3 PUFA [156]
supplementation.
Nasopharvneeal RvD1 inhibited HMGB1-induced
16 In Vitro HMGB1 * RvD1 pharyng epithelial-to-mesenchymal [157]
Carcinoma Cells .
transition.
DHA could attenuate the
progression of obesity-related OA
In Vivo and and exert protective effects on
4 p
7 In Vitro HMGB1 10 uMDHA OA cartilage by inhibiting [125]
HMGBI-RAGE/TLR4 signaling
pathway.
o o Chronic Vasculopathy w-3 PUFAs following SBTx
18 Animal Model HMGB1 ¢ 28% w-3 PUFA .Emd 3 o of Small Bowel significantly reduced the HMGB1 [46]
w-6 PUFA in fish oil .
Allografts expression.
X 6.25,12.5, and 25 pg/mL Intestinal Porcine EPA and DHA downregulated -
13
19 In Vitro HMGB1 EPA or DHA Epithelial Cell Injury protein expressions of HMGBI. [158]
Ventilator-induced The protective role of RvD1 is
20 Animal Model HMGB1 * 300-500 ng RvD1 Lune Injur closely linked to the decreased [159]
& tnjury expression of HMGB1.
o w-3 PUFA diet plus chemotherapy
21 Animal Model S100B ¢ 2% of kce;:l)sl_gi)m EPA + Ovariectomized Mice attenuated gene expression of [160]
51003 by downregulation.
RvD1 pretreatment exhibited
protective effects against MI
22 Animal Model HMGB1 * 0.1 pg RvD1 MI through downregulation of [161]
HMGBI and its related TLR4 and
NF-kB expressions.
In Vitro and Tn w-3 PUFAs reduce the damage
23 Vi NSE * 100 mg/Kg DHA Neonatal Jaundice caused by bilirubin, with [162]
o
decreased NSE.
RvD1 attenuated IR-induced
. Ischemia-Reperfusion hepatocellular damage as
4 P P &
24 Animal Model HMGB1 15 mg/kg RvD1 Injury evidenced by serum HMGB1 [163]
release.
Hepatic Expression of HMGBI is
25 Animal Study HMGB1 ¢ 1 mL DHA Ischemia-reperfusion downregulated in liver tissues [164]
Injury after DHA supplementation.
Post-lung Transplant RvD1 signaling on alveolar
26 Animal Model HMGB1 ¢ 100 ng/kg RvD1 Ischemia-reperfusion macrophages attenuated HMGB1 [165]

Injury

release.

Note: ¥ Decrease; NSE: Neuron-Specific Enolase; mRNA: Messenger Ribonucleic Acid; RCT: Randomized
Controlled Trial; HMGB1: High Mobility Group Box 1; SIRT1: Sirtuin 1; DHA: Docosahexaenoic Acid; EPA:
Eicosapentaenoic Acid; w-3 PUFAs: Omega-3 Polyunsaturated Fatty Acids; TBI: Traumatic Brain Injury; SBTx:
Small Bowel Transplantation; TNBC: Triple Negative Breast Cancer; RvD1: Resolvin D1; MI: Myocardial Infarction;

OA: Obesity-Related Osteoarthritis.



Cells 2024, 13,1791

10 of 18

Across numerous animal models and in vitro studies, w-3 PUFAs and RvD1 (Resolvin
D1), a specific pro-resolving mediator that is synthesized from w-3 PUFAs, particularly EPA,
consistently demonstrate a significant reduction in HMGBI [44,46,125,155,158,159,161,163-165],
51008 [160], and NSE [156,162] levels in response to diverse conditions like TBI, ischemia-
reperfusion injury, cognitive decline, and inflammatory diseases. This suggests w-3 PUFAs
possess neuroprotective and anti-inflammatory properties that could play a therapeutic role in
reducing neuronal and glial injury. Many studies point to the mechanism by which w-3 PUFAs
exert their effects. For HMGB1, w-3 PUFAs often inhibit nuclear translocation and acetylation,
reduce its interaction with inflammatory pathways like TLR4, NF-kB, and RAGE, and enhance
SIRT1 activity. These mechanisms highlight potential w-3 PUFAs to modulate inflammation
and cellular damage across various tissues. S1003 and NSE, which are key markers for glial and
neuronal injury, were shown to decrease significantly in w-3 PUFA-treated groups compared
to untreated controls in studies focused on TBI and other neurological conditions. This is
particularly notable in clinical studies, such as the reduction in NSE and S1003 levels in patients
with severe TBI, suggesting a possible therapeutic role for w-3 PUFAs in neuroprotection. On
the other hand, not all studies present conclusive positive effects. For example, one study on
septic patients did not find w-3 PUFAs to significantly affect S100( levels, indicating potential
condition-specific efficacy or variable responses depending on patient characteristics, treatment
protocols, or the complexity of the underlying disease. Most of the evidence is based on
animal models, with relatively few clinical trials. Among the clinical studies, one pilot RCT
in older adults found that w-3 supplementation significantly improved HMGBI levels, which
is encouraging but insufficient to generalize to broader clinical settings. There is a clear gap
in robust, large-scale human clinical trials that directly examine the effect of w-3 PUFAs on
these biomarkers in conditions like MDD or neurodegenerative diseases. More clinical trials are
necessary to validate these findings in humans, particularly in chronic and complex conditions
like MDD and other neurodegenerative diseases. We acknowledge some limitations of the study.
This study is largely based on previously published data rather than original research or direct
experimentation. It does not include clinical trials that specifically investigate the connection
between w-3 PUFAs and changes in key biomarkers associated with MDD. As a result, the
findings are more reflective of existing knowledge in the field and do not provide new, empirical
evidence to definitively link w-3 PUFAs to alterations in biomarkers like HMGB1, S1008, or
NSE in MDD patients.

8. Conclusions

In summary, this review explores the relationship between neuroinflammation, neu-
ronal markers, and the potential therapeutic role of w-3 PUFAs in depression. It highlights
the significance of DAMPs and neuronal damage biomarkers as potential indicators of
the progression of depression and underscores the need for a deeper understanding of
these molecular mechanisms. The exploration of omega-3 PUFAs as a promising avenue
for preventing neuroinflammation in depression emphasizes their potential as therapeutic
interventions. Additionally, previous research has suggested that biomarkers like 51003,
HMGB], and NSE may not only reflect the progression of depression but also indicate
an increased risk of neurodegenerative diseases associated with chronic depression. This
underscores the importance of further investigation, particularly through clinical trials, to
explore the connections between depression, DAMP biomarkers, and the anti-depressant-
like effects of w-3 PUFAs.
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mTOR The Mammalian Target of Rapamycin
NF-kB Nuclear Factor Kappa B

NSE Neuron-Specific Enolase
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PI3K Phosphoinositide 3-Kinase

PRRs Pattern Recognition Receptors

RAGE The Receptor for Advanced Glycation End Products
RCT Randomized Controlled Trial

S100P3 5100 Calcium Binding Protein (3
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TBI Traumatic Brain Injury
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